Inteligencia artificial y neurotecnologías

Autores/as

  • Carlos Alberto Castro Campolongo Pontificia Universidad Católica Argentina. Argentina

Resumen

El 2 de abril de 2013, el presidente de los EE. UU. Barack Obama, anunció la Iniciativa BRAIN (Brain Research through Advancing Innovative Neurotechnologies) (The White House, 2013). Su propósito era mapear y comprender la actividad cerebral, un objetivo análogo al que The Human Genome Project llevó a cabo años antes (1990-2003) cuando, gracias a la colaboración internacional, se logró mapear y secuenciar el genoma humano por primera vez. Desde 2013 en adelante se han financiado proyectos para investigar el cerebro en todo el planeta (EE.UU; Europa, China, Japón, Australia, Canadá y Corea del Sur). El foco de dichas investigaciones radica en el desarrollo y aplicación de neurotecnologías para entender las complejas dinámicas de los circuitos de la actividad neuronal y cómo éstas dan origen a nuestra cognición y conducta. Dichas tecnologías de alto rendimiento modelan y simulan informáticamente el cerebro humano integrando datos masivos, los cuales, aportan a los investigadores nuevas herramientas matemáticas para enfrentar diversas enfermedades neurológicas, neurodegenerativas, y otros trastornos (European Commission, 2021).

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Colucci, A., Vermehren, M., Cavallo, A., Angerhöfer, C., Peekhaus, N., Zollo, L., Kim, W., Paik, N., & Soekadar, S. (2022). Brain–Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?. Neurorehabilitation and Neural Repair, 36, 747 - 756. https://doi.org/10.1177/15459683221138751

Cortina, A. (2001). Ética aplicada y democracia radical. Madrid: Tecnos

Dawkins, R. (1976). The selfish gene. New York: Oxford University Press

Défossez, A., Caucheteux, C., Rapin, J., Kabeli, O., & King, J. (2022). Decoding speech from non-invasive brain recordings. ArXiv, abs/2208.12266

European Commission. (2021). The Human Brain Project: A European flagship project. https://digital-strategy.ec.europa.eu/en/news/final-human-brain-project-summit-achievements-and-future-digital-brain-research

Francisco. (2015). Laudato Si: Sobre el cuidado de la casa común. https://www.vatican.va/content/francesco/es/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.html

Genser, J., Herrmann, S. & Yuste, R. (2022). International Human Rights Protection Gaps in the Age of Neurotechnology. https://collimateur.uqam.ca/wp-content/uploads/sites/11/2022/09/NeurorightsFoundation PU BLICAnalysis5.6.22.PDF

Giansanti, D. (2023). An Umbrella Review of the Fusion of fMRI and AI in Autism. Diagnostics, 13. https://doi.org/10.3390/diagnostics13233552)

Hamilton, W.D. (1964). The genetical evolution of social behaviour. J Theo Biology7, 1-52

Hauser, M. (2008). La mente moral. Cómo la naturaleza ha desarrollado nuestro sentido delbien y del mal (Miguel Candel trad.). Barcelona: Paidós

Janapati, R., Dalal, V., Kumar, G. M., Anuradha, P., & Shekar, P. V. R. (2022). Web interface applications controllers used by autonomous EEG-BCI technologies. AIP Conference Proceedings, 2418, 030038. https://doi.org/10.1063/5.0081780

Julià-Pijoan, M. (2022). Sobre la valoración judicial de las neuroimágenes. Rev. chil. derecho vol.49 no.3 Santiago dic. 2022. https://www.scielo.cl/scielo.php?pid=S0718-34372022000300009&script=sci_arttext

Julià-Pijoan, M. (2023). La prueba penal de los estados mentales desde la “neurotecnología”: ¿ya es una realidad?. Polít. crim. vol.18 no.35 Santiago jul. 2023. https://www.scielo.cl/scielo.php?pid=S0718-33992023000100091&script=sci_arttext

Kadry, S., Taniar, D., Damasevicius, R., & Rajinikanth, V. (2021). Automated Detection of Schizophrenia from Brain MRI Slices using Optimized Deep-Features. 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII), 1-5. https://doi.org/10.1109/ICBSII51839.2021.9445133)

Katsnelson, A. (2021). Criminalidad: ¿las imágenes del cerebro sirven de prueba? https://courier.unesco.org/es/articles/criminalidad-las-imagenes-del-cerebro-sirven-de-prueba

Kazazian, K., Edlow, B. L., & Owen, A. M. (2024). Detecting awareness after acute brain injury. The Lancet Neurology, 23, 836–844. https://doi.org/10.1016/S1474-4422(24)00456-7

Kumari, N., Anwar, S. & Bhattacharjee, V. (2022). Automated visual stimuli evoked multi-channel EEG signal classification using EEGCapsNet. Pattern Recognition Letters 153, 29–35.www.doi.org/10.1016/j.patrec.2021.11.019

LHF Labs. (2023). El sesgo en los modelos de lenguaje. https://www.lhf.ai/el-sesgo-en-los-modelos-de-lenguaje/

Li, C., Li, W., Liu, C., Zheng, H., Cai, J., & Wang, S. (2022). Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Medical physics. https://doi.org/10.1002/mp.15936

McDuff, D., Schaekermann, M., Tu, T., Palepu, A., Wang, A., Garrison, J., Singhal, K., Sharma, Y., Azizi, S., Kulkarni, K., Hou, L., Cheng, Y., Liu, Y., Mahdavi, S., Prakash, S., Pathak, A., Semturs, C., Patel, S., Webster, D., Dominowska, E., Gottweis, J., Barral, J., Chou, K., Corrado, G., Matias, Y., Sunshine, J., Karthikesalingam, A., & Natarajan, V. (2023). Towards Accurate Differential Diagnosis with Large Language Models. ArXiv, abs/2312.00164. https://doi.org/10.48550/arXiv.2312.00164

Metzger, S. L., Littlejohn, K. T., Silva, A. B., Moses, D. A., Seaton, M. P., Wang, R., Dougherty, M. E., Liu, J. R., Wu, P., Berger, M. A., Zhuravleva, I., Tu-Chan, A., Ganguly, K., Anumanchipalli, G. K., & Chang, E. F. (2023). A high-performance neuroprosthesis for speech decoding and avatar control.Nature, 620(7976), 1037–1046. https://doi.org/10.1038/s41586-023-06443-4

Moses, D. A., Metzger, S. L., Liu, J. R., Anumanchipalli, G. K., Makin, J. G., Sun, P. F., Chartier, J., Dougherty, M. E., Liu, P. M., Abrams, G. M., Tu-Chan, A., Ganguly, K., & Chang, E. F. (2021). Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria. The New England journal of medicine, 385(3), 217–227. https://doi.org/10.1056/NEJMoa2027540

Precision Neuroscience. (2024, 7 de octubre). Breakthrough in brain–computer interface technology: A new era of neural decoding at the Society for Neuroscience annual meeting Neuroscience 2024. GlobeNewswire. https://www.globenewswire.com/news-release/2024/10/07/2959101/0/en/Breakthrough-in-Brain-Computer-Interface-Technology-A-New-Era-of-Neural-Decoding-at-the-Society-for-Neuroscience-Annual-Meeting-Neuroscience-2024.html

Rapeaux, A., & Constandinou, T.G. (2021). Implantable brain machine interfaces: first-in-human studies, technology challenges and trends. Current opinion in biotechnology, 72, 102-111

Roskies, A. (2002). Neuroethics for the New Millenium. Neuron, 35, 21-23

Saeidi, M., Karwowski, W., Farahani, F., Fiok, K., Taiar, R., Hancock, P., & Al-Juaid, A. (2021). Neural Decoding of EEG Signals with Machine Learning: A Systematic Review. Brain Sciences, 11. https://doi.org/10.3390/brainsci11111525

Samejima, S., Khorasani, A., Ranganathan, V., Nakahara, J., Tolley, N., Boissenin, A., Shalchyan, V., Daliri, M., Smith, J., & Moritz, C. (2021). Brain-Computer-Spinal Interface Restores Upper Limb Function After Spinal Cord Injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1233-1242. https://doi.org/10.1109/TNSRE.2021.3090269

Sani, O. G., Yang, Y., Lee, M. B., Dawes, H. E., Chang, E. F., & Shanechi, M. M. (2018). Mood variations decoded from multi-site intracranial human brain activity. Nature Biotechnology, 36, 954–961. https://doi.org/10.1038/nbt.4200

Schwartzmann, B., Chatterjee, R., Vaghei, Y., Quilty, L. C., Allen, T. A., Arnott, S. R., Atluri, S., Blier, P., Dhami, P., Foster, J. A., Frey, B. N., Kloiber, S., Lam, R. W., Milev, R., Müller, D. J., Soares, C. N., Stengel, C., Parikh, S. V., Turecki, G., Uher, R., ... Farzan, F. (2024). Modulation of neural oscillations in escitalopram treatment: a Canadian biomarker integration network in depression study. Translational psychiatry, 14(1), 432. https://doi.org/10.1038/s41398-024-03110-8

Shanechi, M. M. (2019). Brain–machine interfaces from motor to mood. Nature Neuroscience, 22, 1554–1564. https://doi.org/10.1038/s41593-019-0488-y

Shen, G., Horikawa, T., Majima, K., & Kamitani, Y. (2019). Deep image reconstruction from human brain activity. PLoS computational biology, 15(1), e1006633. https://doi.org/10.1371/journal.pcbi.1006633

Smith, E., Storch, E., Vahia, I., Wong, S., Lavretsky, H., Cummings, J., & Eyre, H. (2021). Affective Computing for Late-Life Mood and Cognitive Disorders. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.782183

Takagi, Y., & Nishimoto, S. (2023). High-resolution image reconstruction with latent diffusion models from human brain activity. bioRxiv

Tang, J., LeBel, A., Jain, S., & Huth, A.G. (2022). Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience, 26, 858-866

The White House. (2013, abril 2).Fact Sheet: BRAIN Initiative. https://obamawhitehouse.archives.gov/the-press-office/2013/04/02/fact-sheet-brain-initiative

Unger, P. (1996). Living high and letting die: Our illusion of inocence. New York: Oxford University Press

Wang, Y., Song, W., Tao, W., Liotta, A., Yang, D., Li, X., Gao, S., Sun, Y., Ge, W., Zhang, W., & Zhang, W. (2022). A Systematic Review on Affective Computing: Emotion Models, Databases, and Recent Advances. ArXiv, abs/2203.06935. https://doi.org/10.48550/arXiv.2203.06935

Watanabe, K., Jogia, J., & Yoshimura, R. (2024). Editorial: Recent developments in neuroimaging in mood disorders. Frontiers in psychiatry, 15, 1371347. https://doi.org/10.3389/fpsyt.2024.1371347

Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., & Shenoy, K. V. (2021). High-performance brain-to-text communication via handwriting. Nature, 593(7858), 249–254. https://doi.org/10.1038/s41586-021-03506-2

Wilson, J.Q. (1993). The moral sense. New York: Free Press

Zhang, W., Kim, S. M., Wang, W., Cai, C., Feng, Y., Kong, W., & Lin, X. (2018). Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Frontiers in molecular neuroscience, 11, 221. https://doi.org/10.3389/fnmol.2018.00221

Zhang, Z., Li, G., Xu, Y., & Tang, X. (2021). Application of Artificial Intelligence in the MRI Classification Task of Human Brain Neurological and Psychiatric Diseases: A Scoping Review. Diagnostics, 11. https://doi.org/10.3390/diagnostics11081402

Zheng, L., Liao, P., Wu, X., Cao, M., Cui, W., Lu, L., Xu, H., Zhu, L., Lyu, B., Wang, X., Teng, P., Wang, J., Vogrin, S., Plummer, C., Luan, G., & Gao, J. (2023). An artificial intelligence–based pipeline for automated detection and localisation of epileptic sources from magnetoencephalography. Journal of Neural Engineering, 20. https://doi.org/10.1088/1741-2552/acef92

Zhu, M., Li, S., Kuang, Y., Hill, V., Heimberger, A., Zhai, L., & Zhai, S. (2022). Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.924245

Descargas

Publicado

21-02-2025

Cómo citar

Castro Campolongo, C. A. (2025). Inteligencia artificial y neurotecnologías. Vida Y Ética, 25(1), 75–91. Recuperado a partir de https://erevistas.uca.edu.ar./index.php/VyE/article/view/6529

Número

Sección

Dossier especial